

Perspective on CCS – Cost, Energy & Scale

Energy Hub Workshop July 6, 2009 Emeryville

Karl Gerdes Consulting Engineer Chevron Energy Technology Company

Email: karl.gerdes@chevron.com

There are three main approaches to CO₂ Capture from combustion operations.

(And no silver bullets)

Chevron

A sense of scale

400 MW (net) NGCC -> 1.4 Mtpa of CO2

500 MW (net) SC PC -> 3.5 Mtpa of CO2

Chevron's Richmond Refinery -> ~4 Mtpa of CO2

How big are the pipelines? 1

For 3.6 Mtpa about 12 inch ID

For 50 Mtpa about 28 inch ID

How large is a Giga-tonne?

About 320 500-MW PC plants (~50% of current US name plate coal capacity)

Note 1: See "The Cost of CCS in the Perth Region," Allinson et al, SPE 101122-PP

© Chevron 2009

Post-Combustion CO₂ Capture

Key CO₂ sources are boilers, heaters, and turbines

Flue gas is hot, low pressure, and dilute in CO₂ (4-10 vol.%)

Current technology is proven and is based on amine scrubbing using very large equipment

Large energy requirements for CO_2 recovery Other flue gas components (e.g., O_2 , NO_X , SO_X degrade amines)

This picture shows the absorber (foreground) and the stripper for removing CO_2 from the flue gases from an equivalent of a <u>40 MW</u> gas fired power plant.

ECONAMINETM Unit at Bellingham, MA CO₂ Plant Courtesy of Val Francuz (Fluor) and Cliff Lowe (Chevron)

A 500 MW SCPC scrubber is 20m in diameter

© Chevron 2009

Issues/Barriers for Capture Technology (US DOE view circa 2004 ... and still true)

Post-Combustion Capture (the only industrially proven approach)

- CO₂ in flue gas is dilute requiring large gas-handling systems.
- Other flue gas components (O₂, SOx, NOx, particulate) adversely affect separation tech's.

PreCombustion Decarbonization

- Existing CO₂ removal tech's operate at low T, requiring syngas cooling/ reheat.
- Often cheaper to combust syngas before full shift, reducing fraction CO₂ captured.

Oxy-Fired Combustion

- Cryogenic air separation is costly.
- Pure oxy combustion T too high for existing materials & mediation by CO₂ recycle uses energy.

Crosscutting Science

- CO₂ capture tech's have poor selectivity and/or require significant heating/cooling.
- Decreased efficiency and resulting increased fuel use is going the wrong direction. AS MUCH AS 1/3 POWER PLANT OUTPUT.

Bottom Line

CO₂ Capture is COSTLY!

Some rough costs

Post-combustion capture on H2 Plant¹

- 8330 kmol/hr H2 releases ~1.2 mtpa CO2
- Capital cost of Amine Scrubber ~\$500 MM (4Q07)
- CO2 avoided cost \$71/tonne (85% capture)

Post-C capture on small NGCC Plant²

- 660,000 mtpa CO2 captured (~200 MW)
- Capital cost of amine system ~\$350 MM
- CO2 avoided cost \$157/tonne (70% capture)

Note 1: "Designing a Climate Friendly H2 Plant,"Lindsay et al, GHGT9

Note 2: Internal study

© Chevron 2009

Summary

CO₂ Capture is Costly.

- Perhaps 70% of total CCS cost chain.
- Economy of Scale is crucial.
- Promising technologies are emerging, but time is running out.
- There are no silver bullets economics are very site specific.

CO₂ Capture does not occur in a vacuum.

- Transportation infrastructure huge. How to pay?
- Secure storage sites.

The oil and gas industry has experience with all of these technologies, but none are demonstrated for widespread deployment.